*σ***/***π* **versus** *π***/***π* **Conjugation: DFT Studies on Oligocyclopropenones and Related Systems**

ORGANIC

Daniel B. Werz* and Alexander Düfert

Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany

dwerz@gwdg.de

Received September 28, 2008

ABSTRACT

DFT studies on oligocyclopropenones and related systems $5(n)-9(n)$ are reported. A strong $\partial\pi$ interaction between the π system and the σ **framework of the three-membered rings is observed in almost all cases, leading to a perpendicular arrangement of the** *π* **systems in the most favored conformation. Also the shape of cyclic congeners is strongly influenced by** *σ***/***π* **interactions.**

A simple and very useful concept in organic chemistry is the separation between σ and π framework within a molecule.¹ The geometries and the reactivities of numerous molecular entities can be explained by this approach.^{1,2} The most prominent examples are ethylene and benzene where the σ system lies in the plane of the molecule whereas the π system is located out of the plane. The connection of two ethylene units $\mathbf{1}(I)$ leads to butadiene $\mathbf{1}(2)$ whose most stable conformation shows *C*2*^h* symmetry with an *s-trans* arrangement of the two CC double bonds. This planar conformation is favored due to efficient overlap of the p orbitals or in other words to an efficient π/π^* interaction between the two double

10.1021/ol8022566 CCC: \$40.75 2008 American Chemical Society **Published on Web 10/28/2008**

bonds. However, in more complex molecules such as in [2.2]paracyclophane (**2**) ³ or strained bi-, tri-, and oligocyclic systems $(e.g., 3 \text{ and } 4),$ ^{4,5} a hypothetical separation between the σ and π system does not suffice to describe their molecular properties and reactivities.

In all of these cases we observe a strong interaction between the σ and the π system due to geometrical constraints.³⁻⁵ In the case of **3** the two perpendicular π systems show a very large interaction via the *σ* system of its central four-membered ring.^{4b,c} Cyclooctatetraene derivative 4 is planar due to an effective σ/π^* interaction between the bicyclic σ framework and the π system of the eightmembered ring.⁵

^{(1) (}a) Hu¨ckel, E. *Z. Phys.* **1930**, *60*, 423–456. (b) Heilbronner, E.; Bock, H. *Das HMO-Modell und seine Anwendung; Grundlagen und Handhabung*; Verlag Chemie: Weinheim, 1968.

⁽²⁾ Kikuchi, S. *J. Chem. Educ.* **1997**, *74*, 194–201.

^{(3) (}a) Gleiter, R. *Tetrahedron Lett.* **1969**, 4453–4456. (b) Gleiter, R.; Eckert-Maksic´, M.; Scha¨fer, W.; Truesdale, E. A. *Chem. Ber.* **1982**, *115*, 2009–2011.

^{(4) (}a) Paquette, L. A.; Dressel, J.; Chasey, K. L. *J. Am. Chem. Soc.* **1986**, *108*, 512–514. (b) Gleiter, R.; Toyota, A.; Bischof, P.; Krennrich, G.; Dressel, J.; Pansegrau, P. D.; Paquette, L. A. *J. Am. Chem. Soc.* **1988**, *110*, 5490–5497. (c) Bischof, P.; Gleiter, R.; Haider, R. *J. Am. Chem. Soc.* **¹⁹⁷⁸**, *¹⁰⁰*, 1036–1042. (5) Nishinaga, T.; Uto, T.; Inoue, R.; Matsuura, A.; Treitel, N.; Rabinovitz, M.; Komatsu, K. *Chem. Eur. J.* **2008**, *14*, 2067–2074.

Commonly, the relative order of respective orbitals is the following: σ orbitals lie lower in energy than π orbitals, followed by π^* and σ^* orbitals. Thus, π orbitals overlap with *π** orbitals most efficiently in a parallel fashion that we call conjugation, leading to an expanded *all-trans* arrangement of oligoenes $\mathbf{1}(n)$ in the most favored conformation.

Starting from this simple observation we raised the question whether potentially conjugated systems can be manipulated by electronic means in such a way that π/π conjugation is significantly reduced. We excluded steric constraints such as the use of bulky substituents to force the π systems in a perpendicular manner.^{6,7} The idea was to use molecular units whose HOMO is of *σ* type (and in plane of the molecule) and whose LUMO is of π type (and out of plane of the molecule) or vice versa. The connection of two of these moieties shall lead to a most efficient interaction of *σ*- and $π$ -type orbitals resulting in a perpendicular arrangement of the π systems of each unit.

It is well-known that the strained *σ* system of threemembered rings has two high-lying σ orbitals.⁸ The relative energy of π ^{*} orbitals of olefins can be lowered by combining them with a π^* orbital of a CO group (cf. 1,4-cyclohexadiene vs *p*-benzoquinone). Taking these considerations together

Figure 1. HOMO (left) and LUMO (right) of **5(***1***)** as calculated on the level of HF/6-311G(d) based on a B3LYP/6-311G(d) optimized structure.

leads to the assumption that cyclopropenone⁹ moieties such as **5(***1***)** are potential candidates to construct such a molecular assembly. An evaluation of the frontier orbitals of cyclopropenone has shown that such a molecule fulfils these requirements (Figure 1). Substituted cyclopropenones¹⁰⁻¹² and also cyclopropenone derivatives $12d,13$ were shown to be rather stable molecules; however, linked biscyclopropenones and derivatives thereof have not been elucidated by experimental or by theoretical means.

Therefore, we investigated the geometrical properties of a series of linked cyclopropenones and congeners thereof by ab initio studies. All systems were optimized by DFT methods $(B3LYP/6-311G(d))$,^{14,15} and the calculations were carried out with Gaussian 03.¹⁶

For all systems $5(2)-9(2)$ we scanned the potential energy surface by varying the torsion angle φ (in steps of 10°,

(14) (a) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. *J. Chem. Phys.* **1980**, *72*, 650–654. (b) McLean, A. D.; Chandler, G. S. *J. Chem. Phys.* **1980**, *72*, 5639–5648. (c) Curtiss, L. A.; McGrath, M. P.; Blaudeau, J.-P.; Davis, N. E.; Binning, R. C., Jr.; Radom, L. *J. Chem. Phys.* **1995**, *103*, 6104–6113. (d) Clark, T.; Chandrasekhar, J.; Spitznagel, G. W.; Schleyer, P. v. R. *J. Comput. Chem.* **1983**, *4*, 294–301.

(15) (a) Lee, C.; Yang, W.; Parr, R. G. *Phys. Re*V*. B* **¹⁹⁸⁸**, *³⁷*, 785– 789. (b) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. *Chem. Phys. Lett.* **1989**, *157*, 200–206. (c) Becke, A. D. *J. Chem. Phys.* **1993**, *98*, 5648– 5652.

(16) Frisch, M. J.; Trucks, G. W. ; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. *Gaussian 03, Re*V*ision B.03*; Gaussian, Inc.: Wallingford, CT, 2004.

^{(6) (}a) Hopf, H.; Lipka, H.; Traetteberg, M. *Angew. Chem.* **1994**, *106*, ²³²-233; *Angew*. *Chem*. *Int*. *Ed*. *Engl*. **¹⁹⁹⁴**, *²⁹*, 204-205. (b) Traetteberg, M.; Bakken, P.; Hopf, H.; Hänel, R. *Chem. Ber.* **1994**, *127*, 1469–1478.

⁽⁷⁾ Köbrich, G.; Mannschreck, A.; Misra, R. A.; Rissmann, G.; Rösner, M.; Zu¨ndorf, W. *Chem. Ber.* **1972**, *105*, 3794–3806.

⁽⁸⁾ Gleiter, R. *Top. Curr. Chem.* **1979**, *86*, 197–285, and references

therein.
(9) Komatsu, K.; Kitagawa, T. Chem. Rev. 2003, 103, 1371-1427. (9) Komatsu, K.; Kitagawa, T. *Chem. Re*V*.* **²⁰⁰³**, *¹⁰³*, 1371–1427. (10) Breslow, R.; Haynie, R.; Mirra, J. *J. Am. Chem. Soc.* **¹⁹⁵⁹**, *⁸¹*, 247–248.

^{(11) (}a) Eicher, T.; Weber, J. L. *Top. Curr. Chem.* **1975**, *57*, 1–109. (b) Breslow, R.; Altman, L. J. *J. Am. Chem. Soc.* **1966**, *88*, 504–509. (c) Eicher, T.; Pelz, N. *Tetrahedron Lett.* **1974**, *15*, 1631–1634.

^{(12) (}a) Eggerding, D.; West, R. *J. Am. Chem. Soc.* **1976**, *98*, 3641– 3644. (b) Yoshida, Z.; Konishi, H.; Tawara, Y.; Nishikawa, K.; Ogoshi, H. *Tetrahedron Lett.* **1973**, *14*, 2619–2622. (c) Dehmlow, E. V. *Chem. Ber.* **1968**, *101*, 410–426. (d) Weiss, R.; Schlierf, C.; Schloter, K. *J. Am. Chem. Soc.* **1976**, *98*, 4668–4669. (e) Gleiter, R.; Merger, M.; Altreuther, A.; Irngartinger, H. *J. Org. Chem.* **1995**, *60*, 4692–4696. (f) Werz, D. B.; Rominger, F.; Hyla-Kryspin, I.; Gleiter, R. *J. Org. Chem.* **2001**, *66*, 3416– 3422. (g) Werz, D. B.; Gleiter, R.; Rominger, F. *Eur. J. Org. Chem.* **2003**, 151–154. (h) Werz, D. B.; Gleiter, R.; Rominger, F. *Arki*V*oc* **²⁰⁰⁵**, *⁴*, 102– 109.

^{(13) (}a) Laban, G.; Fabian, J.; Mayer, R. *Z. Chem.* **1968**, *8*, 414–15. (b) Matsumura, N.; Tanaka, H.; Yagyu, Y.; Mizuno, K.; Inoue, H.; Takada, K.; Yasui, M.; Iwasaki, F. *J. Org. Chem.* **1998**, *63*, 163–168. (c) Gray, I. P.; Bhattacharyya, P.; Slawin, A. M. Z.; Woollins, J. D. *Chem. Eur. J.* **2005**, *11*, 6221–6227. (d) Werz, D. B.; Schuster, A.; Gleiter, R.; Rominger, F. *Org. Lett.* **2005**, *7*, 917–920.

relaxed energy scan) between the planes of the threemembered rings. The results are shown in Figure 2. As anticipated by our previous assumptions, a stable conformation with an almost perpendicular arrangement of the two ring planes was found for **5(***2***)**, **6(***2***)**, **7(***2***)**, and **9(***2***)**. The corresponding rotational barriers leading to the C_{2h} and C_{2v} symmetric structures with conjugated π systems range from 1.2 for the selenium congener **7(***2***)** to 30.9 kJ/mol for **9(***2***)**. Only for **8(***2***)**, the congener with *exo*-substituted CC bonds, a linear arrangement $(C_{2h}$ symmetry) as in the case of butadiene **1(***2***)** is more favorable (Table 1).

Table 1. Most Important Parameters of **⁵**(*2*)-**9**(*2*) for Minima and Maxima of the Potential Energy Surface (Calculated at the B3LYP/6-311G(d) Level of Theory)

							φ [deg] ^a a [Å] b [Å] c [Å] d [Å] ΔE rot [kJ/mol] ^b
5(2)	C ₂	95.1	1.400	1.352	1.497	1.400	0.0
	C_{2h}	180.0	1.434	1.349	1.447	1.434	11.6
6(2)	C_2	107.6	1.399	1.341	1.460	1.401	0.0
	C_{2h}	180.0	1.418	1.340	1.437	1.420	4.0
7(2)	C ₂	132.1	1.402	1.341	1.449	1.404	0.0
	C_{2h}	180.0	1.413	1.341	1.437	1.414	1.3
8(2)	C ₂	96.9	1.417	1.323	1.462	1.430	14.8
	C_{2h}	180.0	1.409	1.330	1.455	1.431	0.0
9(2)	C_2	96.5	1.404	1.364	1.491	1.450	0.0
	C_{2h}	180.0	1.449	1.354	1.477	1.477	30.9
		membered rings. $\frac{b}{c}$ A value of 0.0 defines the global minimum.					α φ describes the torsional angle between the two planes of the three-

A comparison of the distance *a* (for definition, see molecule **5(2)**) reveals short distances for $\varphi \approx 90^{\circ}$ and longer distances for $\varphi = 180^\circ$. These observations suggest that the σ/π^* interaction is much more efficient than the π/π^* interaction. Only in the CH₂ substituted system **8(2)**, π/π^* interaction seems to be more favorable, leading to an increase of bond length *a* for $\varphi \rightarrow 90^{\circ}$ (Figure 3). In line with these observations the bond length *c* decreases when the planar C_{2h} symmetric structure is reached. A survey of all relevant bond lengths and the torsional angles φ for minima and rotational transition states of $\mathbf{5}(2) - \mathbf{9}(2)$ is also given in Table 1.

NBO analyses¹⁷ have shown that the Wiberg bond indices $(WBI)¹⁸$ of the formal single bond between the threemembered rings of $5(2)$ -7(2) and $9(2)$ are much larger if the π systems are not conjugated. For 5(2) a WBI of 1.14 is observed for bond *a* in the most stable conformer, whereas in the planar C_{2h} symmetric structure with conjugated π systems only a WBI of 1.03 is observed. This behavior is exceptional and stands in strong contrast to systems such as common linked π systems (e.g., $1(n)$, but also $8(n)$).

To unravel the various contributions leading to these unusual conformations, we used NBO analysis.17 Such an analysis reveals that the magnitude of the rotational barriers

Figure 2. Scans of the rotational energies of **5(***2***)**-**9(***2***)** depending on the torsional angle φ as derived from B3LYP/6-311G(d) calculations.

Figure 3. Variation of distance *a* in $5(2)$ –9(2) depending on the torsional angle φ as derived from B3LYP/6-311G(d) calculations.

Figure 4. Most stable conformers of **5(***2***)** (left) and **5(***3***)** (right).

results essentially as a compromise of two effects: the energetic difference between high-lying *σ* orbitals with the low-lying π^* orbital and the energetic difference between the *π* orbital of one unit and the *π** orbital of the other. A preference of the latter interaction forces the system into a planar arrangement as it is observed in the case of **8(***2***)**. For all other systems $5(2)$ - $7(2)$ and $9(2)$ the principal interactions are $\sigma \rightarrow \pi^*$ interactions of the bent σ orbitals (bond *c* and

⁽¹⁷⁾ Foster, J. P.; Weinhold, F. *J. Am. Chem. Soc.* **1980**, *102*, 7211– 7218.

⁽¹⁸⁾ Wiberg, K. B. *Tetrahedron* **1968**, *24*, 1083–1096.

to minor extent also bond *b*) with the unoccupied π^* orbital of the three-membered ring. Keeping these interactions in mind it is easy to understand the energetic order of the rotational barriers and the variation of the distance *a*. The more electron-withdrawing the CX $(X = 0, S, Se)$ or BH group is, the lower in energy is the *π** orbital. The bent *σ* orbitals are not that much affected by CX group, except in the case of $9(n)$. The electropositive nature of boron leads to a bent σ orbital even higher in energy than for $5(n)-7(n)$. Thus, **9(***2***)** shows the most pronounced effect of the series (Figures 2 and 3).

Besides the dimers we optimized also oligomers $5(n)-8(n)$ $(n = 3-5)$ (see Supporting Information). The most stable conformation of **5(***3***)** also resulting in a perpendicular arrangment of the π systems is shown in Figure 4. For the congener with the most distinct effect, $9(n)$, we elucidated the most favored conformations up to a 9-mer. As in Figure 5 depicted, one observes a helical structure consisting of

Figure 5. Optimized structure of **9(***9***)** showing a helical arrangement of the three-membered rings.

three-membered rings, the result of the perpendicular arrangement of the π systems. Molecular orbital calculations have shown that the HOMOs and the LUMOs of these molecular entities are fully delocalized attributable to efficient *σ*/*π* interaction.

Finally, we analyzed the geometrical properties of cylopropenone hexamers and derivatives thereof arranged in a ring-like fashion, such as $10(6)-14(6)$. As anticipated from our previous results no planar structures were observed (with the exception of hydrocarbon **13(***6***)**). The binary carbonchalcogen compounds $10(6)-12(6)$ adopt a C_2 symmetric structure as depicted in Figure 6 for **10(***6***)**. In contrast, the BH containing counterpart **14(6)** shows an almost C_{2v} symmetric molecular structure. All of these calculations were performed without any symmetry restrictions. As anticipated from our previous investigations the hydrocarbon analog **13(6)** prefers planarity as a result of the more efficient π/π^* interaction.

In conclusion, our investigations demonstrate that oligocyclopropenones and corresponding derivatives are minima

on the potential energy surface as shown by vibrational analysis. Most of their structures are determined by highly efficient σ/π interactions leading to C_2 symmetric conformations of the dimers with an almost perpendicular arrangement of the three-membered rings in the most favored conformation. This behavior is rationalized by high-lying *σ* orbitals

Figure 6. Optimized structures of **10(***6***)** (left) and **14(***6***)** (right).

being in the plane of the three-membered ring and low-lying *π** orbitals being out of plane. The double bond character between the π systems is larger for a perpendicular arrangement than for planarity. Synthetic efforts seem worthwhile to investigate these fascinating molecules and their remarkable conformations.

Acknowledgment. This research was supported by the Deutsche Forschungsgemeinschaft (Emmy Noether Fellowship to D.B.W.) and the Fonds der Chemischen Industrie. A.D. is grateful to the Studienstiftung des deutschen Volkes for a Ph.D. fellowship. The authors thank Prof. Lutz F. Tietze for generous support of the work.

Supporting Information Available: Gaussian archive entries and optimized structures for all calculated species; overview of Wiberg bond indices. This material is available free of charge via the Internet at http://pubs.acs.org.

OL8022566